Copied to
clipboard

G = C3×C23.7D4order 192 = 26·3

Direct product of C3 and C23.7D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×C23.7D4, 2+ 1+4.5C6, C23⋊C44C6, (C2×C12).26D4, (C22×C6).7D4, C23.7(C3×D4), C22.19(C6×D4), C6.105C22≀C2, (C22×C12)⋊4C22, C22.D41C6, C23.4(C22×C6), (C6×D4).184C22, (C22×C6).83C23, (C3×2+ 1+4).4C2, (C2×C4).7(C3×D4), C22⋊C42(C2×C6), (C22×C4)⋊3(C2×C6), (C2×D4).9(C2×C6), (C3×C23⋊C4)⋊10C2, (C2×C6).414(C2×D4), C2.19(C3×C22≀C2), (C3×C22⋊C4)⋊37C22, (C3×C22.D4)⋊20C2, SmallGroup(192,891)

Series: Derived Chief Lower central Upper central

C1C23 — C3×C23.7D4
C1C2C22C23C22×C6C22×C12C3×C22.D4 — C3×C23.7D4
C1C2C23 — C3×C23.7D4
C1C6C22×C6 — C3×C23.7D4

Generators and relations for C3×C23.7D4
 G = < a,b,c,d,e,f | a3=b2=c2=d2=e4=1, f2=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, ebe-1=fbf-1=bcd, ece-1=cd=dc, cf=fc, de=ed, df=fd, fef-1=de-1 >

Subgroups: 322 in 160 conjugacy classes, 54 normal (12 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C12, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C4○D4, C2×C12, C2×C12, C3×D4, C3×Q8, C22×C6, C22×C6, C22×C6, C23⋊C4, C22.D4, 2+ 1+4, C3×C22⋊C4, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C6×D4, C6×D4, C3×C4○D4, C23.7D4, C3×C23⋊C4, C3×C22.D4, C3×2+ 1+4, C3×C23.7D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C3×D4, C22×C6, C22≀C2, C6×D4, C23.7D4, C3×C22≀C2, C3×C23.7D4

Smallest permutation representation of C3×C23.7D4
On 48 points
Generators in S48
(1 37 36)(2 38 33)(3 39 34)(4 40 35)(5 47 42)(6 48 43)(7 45 44)(8 46 41)(9 18 13)(10 19 14)(11 20 15)(12 17 16)(21 32 27)(22 29 28)(23 30 25)(24 31 26)
(2 43)(3 16)(4 23)(6 38)(7 29)(8 9)(11 32)(12 39)(13 41)(15 21)(17 34)(18 46)(20 27)(22 44)(25 35)(28 45)(30 40)(33 48)
(1 24)(2 43)(3 22)(4 41)(5 10)(6 38)(7 12)(8 40)(9 30)(11 32)(13 23)(14 42)(15 21)(16 44)(17 45)(18 25)(19 47)(20 27)(26 36)(28 34)(29 39)(31 37)(33 48)(35 46)
(1 14)(2 15)(3 16)(4 13)(5 31)(6 32)(7 29)(8 30)(9 40)(10 37)(11 38)(12 39)(17 34)(18 35)(19 36)(20 33)(21 43)(22 44)(23 41)(24 42)(25 46)(26 47)(27 48)(28 45)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 13 14 4)(2 3 15 16)(5 8 31 30)(6 29 32 7)(9 10 40 37)(11 12 38 39)(17 33 34 20)(18 19 35 36)(21 44 43 22)(23 42 41 24)(25 47 46 26)(27 45 48 28)

G:=sub<Sym(48)| (1,37,36)(2,38,33)(3,39,34)(4,40,35)(5,47,42)(6,48,43)(7,45,44)(8,46,41)(9,18,13)(10,19,14)(11,20,15)(12,17,16)(21,32,27)(22,29,28)(23,30,25)(24,31,26), (2,43)(3,16)(4,23)(6,38)(7,29)(8,9)(11,32)(12,39)(13,41)(15,21)(17,34)(18,46)(20,27)(22,44)(25,35)(28,45)(30,40)(33,48), (1,24)(2,43)(3,22)(4,41)(5,10)(6,38)(7,12)(8,40)(9,30)(11,32)(13,23)(14,42)(15,21)(16,44)(17,45)(18,25)(19,47)(20,27)(26,36)(28,34)(29,39)(31,37)(33,48)(35,46), (1,14)(2,15)(3,16)(4,13)(5,31)(6,32)(7,29)(8,30)(9,40)(10,37)(11,38)(12,39)(17,34)(18,35)(19,36)(20,33)(21,43)(22,44)(23,41)(24,42)(25,46)(26,47)(27,48)(28,45), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,13,14,4)(2,3,15,16)(5,8,31,30)(6,29,32,7)(9,10,40,37)(11,12,38,39)(17,33,34,20)(18,19,35,36)(21,44,43,22)(23,42,41,24)(25,47,46,26)(27,45,48,28)>;

G:=Group( (1,37,36)(2,38,33)(3,39,34)(4,40,35)(5,47,42)(6,48,43)(7,45,44)(8,46,41)(9,18,13)(10,19,14)(11,20,15)(12,17,16)(21,32,27)(22,29,28)(23,30,25)(24,31,26), (2,43)(3,16)(4,23)(6,38)(7,29)(8,9)(11,32)(12,39)(13,41)(15,21)(17,34)(18,46)(20,27)(22,44)(25,35)(28,45)(30,40)(33,48), (1,24)(2,43)(3,22)(4,41)(5,10)(6,38)(7,12)(8,40)(9,30)(11,32)(13,23)(14,42)(15,21)(16,44)(17,45)(18,25)(19,47)(20,27)(26,36)(28,34)(29,39)(31,37)(33,48)(35,46), (1,14)(2,15)(3,16)(4,13)(5,31)(6,32)(7,29)(8,30)(9,40)(10,37)(11,38)(12,39)(17,34)(18,35)(19,36)(20,33)(21,43)(22,44)(23,41)(24,42)(25,46)(26,47)(27,48)(28,45), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,13,14,4)(2,3,15,16)(5,8,31,30)(6,29,32,7)(9,10,40,37)(11,12,38,39)(17,33,34,20)(18,19,35,36)(21,44,43,22)(23,42,41,24)(25,47,46,26)(27,45,48,28) );

G=PermutationGroup([[(1,37,36),(2,38,33),(3,39,34),(4,40,35),(5,47,42),(6,48,43),(7,45,44),(8,46,41),(9,18,13),(10,19,14),(11,20,15),(12,17,16),(21,32,27),(22,29,28),(23,30,25),(24,31,26)], [(2,43),(3,16),(4,23),(6,38),(7,29),(8,9),(11,32),(12,39),(13,41),(15,21),(17,34),(18,46),(20,27),(22,44),(25,35),(28,45),(30,40),(33,48)], [(1,24),(2,43),(3,22),(4,41),(5,10),(6,38),(7,12),(8,40),(9,30),(11,32),(13,23),(14,42),(15,21),(16,44),(17,45),(18,25),(19,47),(20,27),(26,36),(28,34),(29,39),(31,37),(33,48),(35,46)], [(1,14),(2,15),(3,16),(4,13),(5,31),(6,32),(7,29),(8,30),(9,40),(10,37),(11,38),(12,39),(17,34),(18,35),(19,36),(20,33),(21,43),(22,44),(23,41),(24,42),(25,46),(26,47),(27,48),(28,45)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,13,14,4),(2,3,15,16),(5,8,31,30),(6,29,32,7),(9,10,40,37),(11,12,38,39),(17,33,34,20),(18,19,35,36),(21,44,43,22),(23,42,41,24),(25,47,46,26),(27,45,48,28)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A···4E4F4G4H6A6B6C···6H6I···6N12A···12J12K···12P
order12222222334···4444666···66···612···1212···12
size11222444114···4888112···24···44···48···8

48 irreducible representations

dim11111111222244
type++++++
imageC1C2C2C2C3C6C6C6D4D4C3×D4C3×D4C23.7D4C3×C23.7D4
kernelC3×C23.7D4C3×C23⋊C4C3×C22.D4C3×2+ 1+4C23.7D4C23⋊C4C22.D42+ 1+4C2×C12C22×C6C2×C4C23C3C1
# reps13312662336624

Matrix representation of C3×C23.7D4 in GL4(𝔽13) generated by

3000
0300
0030
0003
,
1000
01200
00120
0001
,
10011
01110
00120
00012
,
12000
01200
00120
00012
,
0858
5058
5008
0850
,
0858
8085
0080
0008
G:=sub<GL(4,GF(13))| [3,0,0,0,0,3,0,0,0,0,3,0,0,0,0,3],[1,0,0,0,0,12,0,0,0,0,12,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,11,12,0,11,0,0,12],[12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[0,5,5,0,8,0,0,8,5,5,0,5,8,8,8,0],[0,8,0,0,8,0,0,0,5,8,8,0,8,5,0,8] >;

C3×C23.7D4 in GAP, Magma, Sage, TeX

C_3\times C_2^3._7D_4
% in TeX

G:=Group("C3xC2^3.7D4");
// GroupNames label

G:=SmallGroup(192,891);
// by ID

G=gap.SmallGroup(192,891);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,672,365,1094,1068,3036]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^4=1,f^2=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=f*b*f^-1=b*c*d,e*c*e^-1=c*d=d*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^-1>;
// generators/relations

׿
×
𝔽